随着时间序列非平稳问题的提出,单位根检验目前已经成为宏观数据建模前首先要进行的工作。 以下就是由小编为您提供的ADF检验中滞后长度的选择。
Dickey和Fuller(1979, 1981)[1]提出了着名的ADF检验,并推导了当时间序列yt是ARIMA(p,1,0)过程且满足检验式中滞后差分项长度k ≥ p时ADF检验统计量的极限分布。然而,在实际运用ADF检验时,真实的p是不知道的,因此需要研究者自己确定k。总的来说滞后长度的选择方法主要分为两类。一类是经验法(rule of thumb)。这种方法是研究者任意选择k,或将k表示为样本容量的函数。另外一类就是根据数据来选择k。这种方法主要有Akaike(1973)信息准则(Akaike Information Criteria,以下简写为AIC)、Schwarz(1978)信息准则(Schwarz Information Criteria,以下简写为SIC)、Hannan和Quinn(1979)信息准则(Hannan and Quinn Information Criteria,以下简写为HQIC)、从一般到特殊法则(General to Special Criteria,以下简写为GSC)、从特殊到一般法则(Special to General Criteria,以下简写为SGC)等。此外,在后来的研究中,Weber(1998)又提出了非自相关法则(No Autocorrelation Criteria),即从一个比较简化的模型开始,逐渐增加滞后差分项直到残差不能拒绝非自相关的原假设。2001年他又提出了一种考虑滞后长度k在特定区间[kmin, kmax]内的从特殊到一般法,该方法运用了一系列F检验,确定的最优滞后长度是使得比其大的直到kmax的所有滞后差分项对应参数的联合检验均不显着的最小的k。
然而很多学者都指出,ADF检验的结论对滞后长度k的选择非常敏感。Phillips和Perron(1988)模拟发现当真实数据生成过程为随机游走时,随着检验式中差分项滞后长度的增加,会导致ADF检验的功效和水平都降低。另外,Schwert(1989)、Agiakloglou和Newbold(1992)以及Harris(1992)等也指出不同的滞后长度选择方法对ADF检验的实际水平和功效有明显影响。这就引发了关于不同方法确定滞后长度是否以及如何影响ADF统计量极限分布的讨论。
其实早在ADF检验提出不久,Said和Dickey(1984)就证明了对阶数未知的ARMA过程检验单位根时,只要检验式中的滞后长度k满足一定的上界条件和下界条件,仍可以用ADF统计量来检验原过程中单位根的存在。紧接着,Lewis和Reinsel(1985)提出了一个与Said和Dickey(1984)下界条件等价的条件,并证明当满足该下界条件和Said和Dickey(1984)上界条件时检验式中滞后差分项的参数估计量具有一致性和渐近正态性。Hannan和Deistler(1988)则提出了各信息准则确定一个平稳可逆的ARMA过程滞后长度的若干性质。
相关推荐: