欢迎访问【高校论文网】合作只是一个起点、服务没有终点!

论文流程 联系我们常见问题

您当前所在位置:

论荧光粉的制备与发光特性

2017-06-26 21:24:00

这是一篇荧光粉的制备与发光特性,由于制备过程中无须机械磨合,不易引进杂质所以纯度高,又由于溶胶由溶液制得,化合物在分子水平混合,故胶粒内化学成分完全一致,接下来让我们一起看看吧!

摘要:利用水解法得到SiO2溶胶,并在其中掺入Mn2+,Zn2+离子,加热烘干制得Zn2SiO4 :Mn胶体,将其在100C高温下煅烧2h,得到含Mn2+的Zn2SiO4 :Mn颗粒。研磨成粉,并用X射线进行物象分析。然后测定试样的激发光谱和发射光谱。结果表明Mn2+掺杂的Zn2SiO4 可绿色荧光。最后对这种物质的发光机理进行分析。

关键词:    胶体     硅酸锌      荧光发射     硅铍石晶体

人类进入21世纪,对各种功能材料,特别是新型发光材料的研发与应用的水平不断深入。研究表明,用掺杂等手段使各种材料性能不断改进,甚至赋予新的特性。如H.X,Zhang等人将Eu2+和Tb3+ 离子掺杂在Zn2SiO4中观察到绿色和红色荧光[1]。Zn2SiO4 :Mn荧光粉作为一种十分重要的发光材料,早在19世纪80年代就被人们所认识和利用。硅酸矿石能在紫外线(365nm)照射下发出可光,所以当时人们通过这种方法,能过更容易找到矿床。

Zn2SiO4 是一种很好的发光材料基质,呈白色粉末状,易于操作合成;Mn2+掺杂Zn2SiO4 是一种高效绿色磷光材料,被广泛应用于等离子体显示板,阴极射线管和荧光灯上。

本文采用溶胶—凝胶法。参与反应的各组分基本上在分子级混合,且各离子分布均匀,所以较之传统的固相反应法,大大缩短了反应时间(如sol-gel在800度下就得到Zn2SiO4晶相[5]),而且设备简单,易于操作。

1  实验

1.1 Zn2SiO4 :Mn的制备:(以下操作分两组同时进行)

将正硅酸乙酯((C2H5O)4Si)25ml,乙醇(CH3COOH)25ml ,蒸馏水15ml并加入少量盐酸(约2ml)催化,搅拌30 min水解后得到SiO2溶胶(并用PH试纸调节);取碳酸锌(ZnCO3•2HO2)48.4G和氯化锰(MnCl2•4H2O)4.3g作原料(注意;氯化锰只添加到其中的一组,另一组不用添加),然后加水溶解并逐滴加入30%的氨水助溶;将Mn2+,Zn2+(摩尔比约为1:100)的溶液加入到SIO2溶胶中,同时迅速开启磁力棒搅拌10~20min后在恒温箱中110℃环境下蒸干,制得Zn2SiO4 :Mn和不含Mn2+的Zn2SiO4胶状固体样品。

2  结果和讨论

2.1 物相分析

图1是Zn2SiO4 :Mn的X射线衍射分析结果,与纯Zn2SiO4 的X射线衍射分析结果对比,表明掺杂Mn2+的Zn2SiO4 :Mn与不掺杂的X射线衍射图相同,结构相同,与标准卡对比相等,得到的化合物是单一相,其原因是Mn2+的掺杂很少,Mn2+取代了Zn2+形成固体溶胶[6],由于Mn2+与Zn2+离径相近(rMn=0.80A,rZn =0.74A)。所以观测到的两种物质为单一的,相是相同的。

2.2  激发光谱与发射光谱。

图2是Zn2SiO4 的激发光谱。图3是Zn2SiO4 :Mn的激发光谱。

由图2可看出未掺Mn2+ 情况下,Zn2SiO4 的激发光谱主要有320nm , 304nm ,   370 nm , 380nm几个吸收峰,其中吸收峰位于λ=320 nm 处的峰值吸收最强.由图3可看出掺杂Mn2+ 情况下.Zn2SiO4 :Mn的激发谱中显示了2个主要的吸收峰分别是λ=294nm和λ=422nm,所以由于Mn2+ 的引人使得基质材料的能带结构发生了变化,而激发谱与材料的能带结构有关。从而掺杂的Zn2SiO4 :Mn与不掺Mn2+  的Zn2SiO4  激发光谱完全不同.

图4是未掺Mn2+ 纯的Zn2SiO4 试样发光谱(λ=320nm). 在纯的Zn2SiO4 的发光峰λ=516nm,λ=625nm,λ=732nm等处但由于发光强度不够,使得发光现象不够明显。图5是掺杂Mn2+ 的Zn2SiO4 :Mn试样发射光谱(λ=294nm)时,然而采用λ=422nm,λ=356nm激发波长,所得谱线发光峰位置并不改变,只是荧光强度改变,通过观察在谱线中有较强的λ=528nm发光峰,同时观察到绿色荧光。

2.3 发光机理

Zn2SiO4 具有硅铍石晶体结构[2],该结构中所有金属离子均处于四配位环境中。因此,Mn2+ (3d5)也应占据四配位环境的格位。在3d5 电子组态内的所以光跃迁不可能获得较高的光输出。然而在半掺杂实验中Mn2+ 的激发通过与Zn2+  的能量转换来实现的。即Mn2+ 置换了晶格中的Zn2+ 形成连续固溶体[6],使晶格结构发生了改变,同时Zn2+ 与Mn2+ 能量得到交换。所以Zn2SiO4 基质中Mn2+ 的发射在250nm左右的区域内表现出一个较强的激发带,这很可能是电荷迁移跃迁时的Mn2+ 的4T→6A[4]发射会产生很大的光输出。

同时应当指出,不同工艺条件下制备的基质材料发光性质不一样,如水热法制备Zn2SiO4 :Mn前驱体观察到绿的荧光[3]本实验采用溶胶—凝胶法,Mn2+ 掺杂的Zn2SiO4 材料的发光过程可认为是Zn2SiO4 基质吸收光子,电子受激由电子价带被激发到导带后又被缺陷捕获,缺陷与Mn2+ 的激发产生复合而释放电子形成荧光。由于在不同波长照射下,受工艺条件及基质材料等因素影响下,缺陷与激发态复合不同,致使Mn2+ 掺杂的Zn2SiO4 中观察到蓝光和绿色荧光,例如Mn2+ 掺杂的Zn2SiO4 中有6A1→4T2[2]的d—d跃迁产生,使其形成荧光。

3  结论:

采用溶胶—凝胶法制备Mn2+ 掺杂的Zn2SiO4 发光材料,由于制备过程中无须机械磨合,不易引进杂质所以纯度高,又由于溶胶由溶液制得,化合物在分子水平混合,故胶粒内化学成分完全一致,掺杂均匀,颗粒细(胶粒尺寸小于0.1μm);所以体系化学均匀性较好。而且合成温度低,粉末活性高;工艺设备简单,易于操作等优点,作为发光材料的实际生产与应用有很好的指导作用。

参考文献

[1]Zhang H X,Buddhudu S,Kam C H ,et al.Luminescence of Eu3+ and Tb3+ doped   nanometer power phosphors.Mater .chem.phs.2001,page68

[2]Sun Jiayue,Du Haiyan and Hu Wenxiang ,固体发光材料,化学工业出版社

[3]Lu S W,Cvpeland T,Lee B I,et al.Synthesis and Luminescent properties of Mn2+ doped Zn2SiO4 phosphors by a hydrothemal method. Jphys Chem solids,2001,page 62

[4]Yang Ping ,Song Chunfeng.Lu Mengkai,et al.Defects andphotoluminescence

of Ni2+ and  Mn2+   doped solgel SO2 glass.J Solid State Chem,2001,page160

[5]Lin J,Usanger D.Menning M,et al .Sol_gel synthesis and characterizationof

Zn2SiO4 :Mn  phosphor films ,Mater Sci and Eng,1999.B64:73-78

[6]Ahmadi T S,HaSe M,Weller H .Low temperature synthesis of pure and Mrr doped willemite phosphor in aqueous medium . Mater Hull,2000,page35

现在大家知道荧光粉的制备与发光特性的内容了吧!希望大家可以好好利用!

相关推荐:

最新研究生材料工程学论文格式 

2016硕士材料工程学论文格式 

相关推荐:

变频器应用中的干扰及抑制措施探讨 

加气砼砌块填充墙裂缝产生的原因及防治措施 

水泥基渗透结晶型防水材料的应用分析 

乳制品中抗生素残留现状及其检测方法探究 

浅谈电子政务系统运行信用的具体策略 

广告位招租

咨询QQ:879182359

客服  

高校论文网
在线客服